MICHAEL-MICHAEL ALDOL REACTION OF CHALCONES WITH CYANOACETYLUREA AND CYANOACETYLPIPERIDINE

Hani D. TABBA, Nidal M. YOUSEF and Mohammad M. AL-ARAB* Department of Chemistry, Yarmouk University, Irbid, Jordan

> Received October 21, 1994 Accepted December 23, 1994

Several highly substituted cyclohexane derivatives were synthesized by the one-pot condensation of chalcones and cyanoacetylurea (2 : 1) using sodium alkoxide in anhydrous alcohol at room temperature. The structure of the reaction products was established by infrared, ¹H and ¹³C NMR spectroscopy as well as by their elemental analysis. Single crystal X-ray crystallography shows the presence of the cyclohexane moiety.

Until recently, many authors have published on the condensation reaction of chalcones with active methylene compounds^{1–5}, but less is known about the reaction of chalcones with *N*-cyanoacetyl derivatives. For example, the reaction of chalcones with malononi-trile⁶ and ethyl cyanoacetate⁷ in presence of ammonium acetate gives substituted pyridines. Chalcones also react with thioacetamide⁸ to give 2-pyridinethiones, with cyanoacetamide⁹ to give 2-pyridones, with ethyl cyanoacetate¹⁰ in presence of sodium ethoxide to give 8-oxaquinolines and with ethyl phenylacetate¹¹ to give the corresponding ethyl 3-aryl-4-benzoyl-2-phenylbutyrates. In addition, chalcones were also condensed with guanidine hydrochloride¹² to give 4,6-diaryl-3,4-dihydro-1*H*-pyrimidine-2-thione. Furthermore, the preparative value of one-pot multicomponent, sequential Michael–Michael ring closure reactions followed by aromatization is illustrated by a total synthesis of juncunol¹³, an unusual dihydrophenanthrene. Recently, we reported that the base catalyzed reaction of chalcones with benzyl cyanides¹⁴ in 1 : 1 molar ratio using a suspension of sodium ethoxide in ether affords a single diastereoisomer of 2,3-diaryl-4-aroylbutyronitriles.

More recently, we reported¹⁵ that the base catalyzed condensation of benzyl cyanides and chalcones in a 1 : 2 molar ratio using sodium ethoxide in anhydrous ether at room temperature gives only 1,3,4,5-tetraaryl-2-aroyl-4-cyanocyclohexanols. An ambiguous structural assignment was achieved from analytical and infrared, proton and ¹³C nuclear

^{*} The author to whom correspondence should be addressed.

magnetic resonance spectral data as well as single crystal X-ray crystallography. In view of our continued interest in the chemistry of active methylene nitriles and other related compounds^{16–22}, we report herein the synthesis of a series of highly substituted

IV	Ar	Ar'	V	Ar	Ar'	R
a	4-tolyl	4-tolyl	a	3-bromophenyl	2-naphthyl	ethyl
ь	4-tolyl	2-naphthyl	ь	3-bromophenyl	4-chlorophenyl	ethyl
c	4-tolyl	phenyl	с	4-anisyl	2-naphthyl	ethyl
d	phenyl	phenyl	d	phenyl	phenyl	ethyl
e	4-anisyl	4-tolyl	e	4-tolyl	2-naphthyl	methyl
			ſ	3,4-dichlorophenyl	2-naphthyl	methyl
			g	3-bromophenyl	2-naphthyl	methyl
			h	4-tolyl	phenyl	methyl
			i	3,4-dimethoxyphenyl	2-naphthyl	methyl

Scheme 1

596

TABLE	Ι						
Selected	bond	angles	(°)	for	the	compound	Vd

Atoms	Angles	Atoms	Angles
C5-C1-C2	109.3(7)	C6-C1-C2	106.0(17)
C6-C1-C5	111.4(7)	C9-C1-C2	110.0(7)
C9-C1-C5	108.1(8)	C9-C1-C6	111.9(8)
C3-C2-C1	108.4(7)	C21-C2-C1	112.2(3)
C21-C2-C3	115.2(7)	C4–C3–C2	109.2(6)
C31-C3-C2	108.7(7)	C31-C3-C4	109.6(7)
C10-C4-C3	109.5(7)	O3-C4-C3	110.4(7)
O3-C4-C10	105.3(6)	C41-C4-C3	113.1(7)
C41-C4-C10	106.0(7)	C41-C4-O3	112.2(2)
C10-C5-C1	109.0(6)	C51-C5-C1	113.1(7)
C51-C5-C10	113.7(7)	O1-C6-C1	121.8(9)
O2-C6-C1	114.7(8)	O2-C6-O1	123.5(8)
O2–C7–C8	116.2(12)	N1-C9-C1	173.0(11)
C5-C10-C4	112.8(7)	С7-О2-С6	115.7(8)
C22-C21-C2	125.9(8)	C26-C21-C2	117.5(9)
C26-C21-C22	116.6(9)	C23-C22-C21	120.8(9)
C24-C23-C22	121.6(11)	C25-C24-C23	119.3(12)
C26-C25-C24	119.5(11)	C25-C26-C21	122.2(10)
O4-C31-C3	119.6(8)	C32-C31-C3	121.6(8)
C32-C31-O4	118.8(8)	C33-C32-C31	122.4(8)
C37-C32-C31	118.7(8)	C37-C32-C33	118.9(8)
C34-C33-C32	120.1(9)	C35-C34-C33	121.2(10)
C36-C35-C34	117.8(10)	C37-C36-C35	122.1(11)
C36-C37-C32	119.9(10)	C42-C41-C4	124.0(11)
C46-C41-C4	118.2(10)	C46-C41-C42	117.7(9)
C43-C42-C41	122.2(12)	C44-C43-C42	119.5(13)
C45-C44-C43	121.3(14)	C46-C45-C44	119.3(16)
C45-C46-C41	119.9(12)	C52-C51-C5	119.5(8)
C56-C51-C5	121.9(7)	C56-C51-C52	118.5(9)
C53-C52-C51	121.1(9)	C54-C53-C52	119.7(9)
C55-C54-C53	120.1(10)	C56-C55-C54	120.2(10)
C55-C56-C51	120.3(8)		

cyclohexanol derivatives by a base catalyzed cyclocondensation reaction of chalcones I and N-cyanoacetylpiperidine II or chalcones I and cyanoacetylurea III in 2 : 1 molar ratios (Scheme 1). This simple one-pot reaction is carried out by stirring a mixture of chalcones and the cyanoacetyl derivatives using sodium alkoxide in anhydrous alcohol. In each condensation, a heavy precipitate is formed which upon workup and recrystallization from glacial acetic acid provides piperidine derivatives IV or the cyclohexanol derivatives V. When cyanoacetylurea was used as a Michael donor, the cyclohexanol derivatives V isolated as a result of this reaction indicated that the reaction could involve double Michael addition of cyanoacetylurea carbanion to two moles of chalcones

Atoms	Distances	Atoms	Distances
C1–C2	1.553(12)	C1–C5	1.534(13)
C1–C6	1.484(12)	C1-C9	1.424(12)
C2–C3	1.518(11)	C2-C21	1.486(13)
C3–C4	1.539(13)	C3–C31	1.499(12)
C4-C10	1.508(11)	C4–O3	1.412(10)
C4–C41	1.487(12)	C5-C10	1.515(10)
C5-C51	1.489(12)	C601	1.188(11)
C6–O2	1.302(12)	C7–C8	1.219(21)
С7-О2	1.440(14)	C9-N1	1.138(12)
O4-C31	1.192(11)	C21-C22	1.356(14)
C21-C26	1.358(14)	C22–C23	1.347(16)
C23–C24	1.331(17)	C24–C25	1.332(19)
C25-C26	1.360(17)	C31-C32	1.470(12)
C32–C33	1.334(13)	C32–C37	1.334(14)
C33–C34	1.354(13)	C34–C35	1.337(16)
C35-C36	1.326(18)	C36–C37	1.341(15)
C41-C42	1.337(16)	C41-C46	1.361(17)
C42–C43	1.360(16)	C43–C44	1.299(25)
C44–C45	1.344(25)	C45-C46	1.376(17)
C51-C52	1.354(11)	C51-C56	1.354(13)
C52–C53	1.367(14)	C53-C54	1.328(16)
C54–C55	1.349(14)	C55-C56	1.358(15)

TABLE II Selected bond lengths (Å) for the compound Vd

followed by cyclization with the elimination of urea molecule and then introduction of ethoxy or methoxy group instead. However, when *N*-cyanoacetylpiperidine was used as the Michael donor, a simple Michael adduct *IV* resulting from the addition of the ace-tylpiperidine carbanion to the chalcone was obtained and none of the cyclohexanol derivative analogs were isolated. The reason could also be that the cyanoacetylurea is more acidic than the piperidine derivative and hence a second Michael addition is possible.

The structural identification of the cyclohexanol derivatives Va - Vi was based on the spectral data, elemental analysis and X-ray crystallography. The infrared spectra of these cyclohexanol derivatives show a peak at 3 410 – 3 500 cm⁻¹ corresponding to the stretching frequency of the hydroxyl group in addition to a very intense band at about 1 650 cm⁻¹ due to the benzoyl carbonyl stretching frequency and a band at around 2 220 cm⁻¹ characteristic for the cyano group. The carbalkoxy carbonyl stretching frequency shows a strong peak at around 1 735 cm⁻¹. The nuclear magnetic resonance spectral data of the cyclohexanol derivatives were also consistent with the suggested structure. As a representative example, in the ¹H NMR spectrum of the compound *Vd* the hydroxyl proton signal is a doublet (J = 2.5 Hz) as a result of a long range coupling with H-5. The intramolecular hydrogen bonding between OH and H-5 makes the molecule rigid enough in a W geometry and this makes the long range coupling possible.

599

TABLE III

Atomic coordinates (. 10^4) and equivalent isotropic displacement parameters (Å² . 10^3) for the compound Vd

Atom	x	у	z	$U_{ m eq}$
C1	4219(9)	11304(8)	3897(3)	36(3)
C2	4698(8)	10045(3)	3941(3)	39(4)
C3	3536(8)	9038(7)	3807(3)	35(3)
C4	2575(9)	9189(7)	4240(4)	39(4)
C5	3271(8)	11479(7)	4331(3)	40(4)
C6	5396(9)	12247(8)	4008(4)	46(4)
C7	6891(14)	13658(11)	3659(5)	118(7)
C8	7673(15)	13453(17)	3335(8)	357(18)
C9	3551(9)	11334(8)	3355(4)	46(4)
C10	2147(8)	10433(7)	4225(3)	42(4)
N1	2903(8)	11324(7)	2946(3)	62(4)
01	5999(6)	12459(5)	4459(3)	56(3)
O2	5677(6)	12839(6)	3581(3)	65(3)
O3	3197(6)	9187(5)	4788(2)	55(3)
O4	4468(6)	7553(5)	4270(3)	59(3)
C21	5696(9)	9910(7)	3609(4)	39(4)
C22	5762(10)	9926(8)	3046(4)	57(4)
C23	6839(12)	9860(10)	2792(4)	73(5)
C24	7966(11)	9757(10)	3079(6)	85(6)
C25	8033(11)	9721(11)	3632(5)	95(6)
C26	6952(10)	9791(8)	3892(4)	64(5)
C31	3996(9)	7819(8)	3834(4)	45(4)
C32	3856(8)	6923(8)	3338(4)	41(4)
C33	3451(9)	7192(8)	2826(4)	56(4)
C34	3340(10)	6334(9)	2382(4)	71(5)
C35	3595(11)	5200(10)	2447(5)	82(6)
C36	3988(12)	4948(10)	2959(5)	95(6)
C37	4132(10)	5790(9)	3404(4)	74(5)
C41	1370(10)	8277(8)	4126(5)	53(4)
C42	813(11)	7823(10)	3613(5)	73(5)
C43	-345(13)	7075(12)	3525(6)	92(6)
C44	-908(15)	6718(12)	3952(9)	115(9)
C45	-392(14)	7118(12)	4480(8)	110(8)
C46	773(12)	7895(9)	4560(5)	73(5)
C51	2865(9)	12717(8)	4360(4)	43(4)
C52	3466(9)	13595(8)	4758(4)	52(4)
C53	3098(10)	14734(9)	4806(5)	67(5)
C54	2139(12)	14986(9)	4451(5)	73(6)
C55	1503(11)	14110(10)	4057(5)	58(4)

Tabba, Yousef, Al-Arab:

600

TABLE IV

Characteristic data of the compounds IV and V

Compound	M.p., °C	Formula	IR	(Calculated/Found			
Compound	Yield, %	(M.w.)	v, cm ⁻¹	% C	% H	% N	% X	
IVa	145 – 146 65	C ₂₅ H ₂₈ N ₂ O ₂ (388.2)	2 240 (C≡N) 1 680 (C=O) 1 640 (C=O)	77.28 77.42	7.27 7.25	7.21 7.25	_	
IVb	155 – 157 67	C ₂₈ H ₂₈ N ₂ O ₂ (424.2)	2 245 (C≡N) 1 670 (C=O) 1 640 (C=O)	79.21 79.85	6.65 6.70	6.60 6.50	_	
IVc	154 – 156 72	C ₂₄ H ₂₈ N ₂ O ₂ (376.2)	2 240 (C≡N) 1 680 (C=O) 1 640 (C=O)	76.55 76.45	7.50 7.54	7.44 7.49	_	
IVd	148 – 149 75	C ₂₃ H ₂₄ N ₂ O ₂ (360.2)	2 240 (C≡N) 1 670 (C=O) 1 645 (C=O)	76.63 76.85	6.72 6.60	7.78 7.81	_	
IVe	168 – 170 68	C ₂₅ H ₂₈ N ₂ O ₂ (388.2)	2 245 (C≡N) 1 680 (C=O) 1 640 (C=O)	77.28 77.78	6.72 7.07	7.21 6.93	-	
Va	234 – 235 65	C ₄₃ H ₃₃ Br ₂ NO ₄ (787.6)	3 480 (OH) 2 250 (C≡N) 1 740 (C=O) 1 660 (C=O)	65.73 65.40	4.24 4.08	1.78 2.08	20.10 19.97	
Vb	216 – 218 71	C ₃₅ H ₂₇ Br ₂ Cl ₂ NO ₄ (753.0)	3 490 (OH) 2 245 (C≡N) 1 740 (C=O) 1 665 (C=O)	55.78 55.62	3.61 3.59	1.68 1.66	_	
Vc	160 – 161 69	C45H39NO6 (689.3)	3 480 (OH) 2 250 (C≡N) 1 740 (C=O) 1 660 (C=O)	78.34 78.17	5.70 5.77	2.03 1.68	_	
Vd	193 – 195 70	C ₃₅ H ₃₁ NO ₄ (529.2)	3 485 (OH) 2 245 (C≡N) 1 745 (C=O) 1 660 (C=O)	79.36 79.66	5.90 6.01	2.65 2.65	_	
Ve	207 – 208 68	C44H37NO4 (643.3)	3 485 (OH) 2 240 (C≡N) 1 740 (C=O) 1 655 (C=O)	82.08 82.53	5.80 5.96	2.18 2.07	_	

TABLE IV
(Continued)

Compound	M.p., °C	Formula	IR	Calculated/Found			
Compound	Yield, % (M.w.)	v, cm^{-1}	% C	% H	% N	% X	
Vf	243 – 245 72	C ₄₂ H ₂₉ Cl ₄ NO ₄ (751.1)	3 485 (OH) 2 245 (C≡N) 1 745 (C=O) 1 660 (C=O)	67.10 67.23	3.89 4.09	1.86 1.76	18.62 18.68
Vg	221 – 223 69	C ₄₂ H ₃₁ Br ₂ NO ₄ (771.1)	3 480 (OH) 2 240 (C=N) 1 740 (C=O) 1 665 (C=O)	65.36 65.84	4.05 4.16	1.82 1.80	20.47 20.75
Vh	208 – 209 70	C ₃₆ H ₃₃ NO ₄ (543.2)	3 485 (OH) 2 240 (C=N) 1 740 (C=O) 1 665 (C=O)	79.52 79.43	6.12 6.29	2.58 2.60	_
Vi	223 – 224 68	C46H41NO8 (735.3)	3 480 (OH) 2 245 (C≡N) 1 745 (C=O) 1 660 (C=O)	75.09 75.64	5.62 5.73	1.90 1.91	_

The ¹³C NMR spectra exhibit a signal at δ 203 – 205 ppm due to the aroyl carbonyl group. The cyano carbon appeared at around δ 117.0 ppm. Another signal at δ 166.0 ppm appeared due to the carbethoxy carbonyl group carbon in addition to the remaining aliphatic carbons at δ (ppm) 74.9, 62.1, 52.7, 49.5, 45.4, and 42.0.

EXPERIMENTAL

Cyanoacetylurea and cyanoacetylpiperidine were purchased from Aldrich Chemical Co. Reagent quality solvents were used without further purification. IR spectra were recorded as a KBr disc using a Pye–Unicam SP3-100 instrument. ¹H and ¹³C NMR spectra (δ , ppm; *J*, Hz) were run in CDCl₃ using a Bruker WP 80-SY instrument with TMS as internal standard. Compounds were analyzed at M-H-W Laboratories, Phoenix, Arizona, U.S.A. Melting points were determined on an Electrothermal melting point apparatus and were uncorrected.

The single crystal X-ray crystallographic analysis of the compound Vd was carried out on a Nicolet R3 m/V 4-circle X-ray diffractometer. The crystal system was triclinic with space group P_1 , a = 10.4835 Å, b = 11.0533 Å, c = 24.1180 Å; $\alpha = 94.767^{\circ}$, $\beta = 95.853^{\circ}$, $\gamma = 98.144^{\circ}$. The selected

Collect. Czech. Chem. Commun. (Vol. 60) (1995)

TABLE V

¹H NMR spectra (δ , ppm; J, Hz) of the compound IV and V

Compound	¹ H NMR spectrum
IVa	1.59 m, 6 H (H'-3,H-4',H-5'); 2.28 s, 3 H (ArCH ₃); 2.38 s, 3 H (ArCH ₃); 3.45 m, 4 H (H-2',H-6'); 3.76 m, 2 H (H-2,H-3); 4.06 dd, 2 H, <i>J</i> = 3.6 (H-4); 7.25 – 8.05 m, 8 H (ArH)
IVb	1.58 m, 6 H (H-3',H-4',H-5'); 2.27 s, 3 H (ArCH ₃); 3.46 m, 4 H (H-2',H-6'); 3.90 m, 2 H (H-2,H-3); 4.10 dd, 2 H, <i>J</i> = 4.0 (H-4); 7.15 – 8.50 m, 11 H (ArH)
IVc	1.65 m, 6 H (H-3',H-4',H-5'); 2.31 s, 3 H (ArCH ₃); 3.36 m, 4 H (H-2',H-6'); 3.80 m, 2 H (H-2,H-3); 4.44 dd, 2 H, <i>J</i> = 3.6 (H-4); 7.10 – 8.00 m, 9 H (ArH)
IVd	1.58 m, 6 H (H-3',H-4',H-5'); 3.50 m, 4 H (H-2',H-6'); 3.78 m, 2 H (H-2,H-3); 4.09 m, 2 H (H-4); 7.05 – 8.10 m, 10 H (ArH)
IVe	1.59 m, 6 H (H-3',H-4',H-5'); 2.28 s, 3 H (ArCH ₃); 3.46 m, 4 H (H-2',H-6'); 3.73 m, 2 H (H-2,H-3); 3.85 s, 3 H (ArCH ₃); 4.06 dd, 2 H, <i>J</i> = 3.8 (H-4); 6.80 – 8.00 m, 8 H (ArH)
Va	0.85 t, 3 H, $J = 7.2$ (CH ₃); 2.25 dd, 1 H, $J = 13.3$, $J = 3.2$ (H-5); 3.02 dt, 1 H, $J = 14.4$, $J = 2.5$, $J = 13.0$ (H-5); 3.86 q, 2 H, $J = 7.2$ (CH ₂); 4.38 dd, 2 H, $J = 14.2$, $J = 13.2$, $J = 2.6$ (H-2,H-6); 5.13 d, 1 H, $J = 12.3$ (H-3); 5.51 d, 1 H (OH); 6.69 - 8.06 m, 22 H (ArH)
Vb	0.95 t, 3 H, $J = 7.2$ (CH ₃); 2.02 dd, 1 H, $J = 13.6$, $J = 3.3$ (H-5); 3.09 dt, 1 H, $J = 14.3$, $J = 2.6$, $J = 13.1$ (H-5); 3.95 q, 2 H, $J = 7.1$ (CH ₂); 4.22 dd, 2 H, $J = 14.2$, $J = 13.1$, $J = 2.6$ (H-2,H-6); 5.60 d, 1 H, $J = 12.2$ (H-3); 5.85 d, 1 H (OH); 7.08 - 7.70 m, 16 H (ArH)
Vc	0.80 t, 3 H, $J = 7.2$ (CH ₃); 2.21 dd, 1 H, $J = 13.2$, $J = 3.2$ (H-5); 3.06 dt, 1 H, $J = 14.3$, $J = 2.5$, $J = 13.1$ (H-5); 3.40 s, 3 H (OCH ₃); 3.75 s, 3 H (OCH ₃); 3.80 q, 2 H, $J = 7.2$ (CH ₂); 4.37 dd, 2 H, $J = 13.2$, $J = 2.5$ (H-2,H-6); 5.14 d, 1 H, $J = 12.2$ (H-3); 5.55 d, 1 H (OH); 6.39 – 8.06 m, 22 H (ArH)
Vd	0.75 t, 3 H, $J = 7.1$ (CH ₃); 2.17 dd, 1 H, $J = 13.2$, $J = 3.1$ (H-5); 2.97 dt, 2 H, $J = 14.3$, $J = 2.5$, $J = 13.1$ (H-5); 3.73 q, 2 H, $J = 7.1$ (CH ₂); 4.29 dd, 2 H, $J = 14.2$, $J = 13.2$, $J = 2.6$ (H-2,H-6); 4.92 d, 1 H, $J = 12.3$ (H-3); 5.32 d, 1 H (OH); 7.34 - 8.20 m, 20 H (ArH)
Ve	1.97 s, 3 H (ArCH ₃); 2.24 dd, 1 H, $J = 13.1$, $J = 3.2$ (H-5); 2.30 s, 3 H (ArCH ₃); 3.10 dt, 1 H, $J = 14.3$, $J = 2.6$, $J = 13.1$ (H-5); 3.32 s, 3 H (OCH ₃); 4.42 dd, 2 H, $J = 14.1$, $J = 13.1$, $J = 2.5$ (H-2,H-6); 5.16 d, 1 H, $J = 12.2$ (H-3); 5.48 d, 1 H, $J = 2.5$ (OH); 6.69 – 8.06 m, 22 H (ArH)

602

Michael-Michael Aldol Reaction of Chalcones

TABLE V (Continued)	
Compound	¹ H NMR spectrum
Vf	2.24 dd, 1 H, $J = 13.1$, $J = 3.2$ (H-5); 3.10 dt, 1 H, $J = 14.3$, $J = 2.5$, $J = 13.1$ (H-5); 3.30 s, 3 H (OCH ₃); 4.42 dd, 2 H, $J = 14.1$, $J = 13.2$, $J = 2.6$ (H-2,H-6); 5.18 d, 1 H, $J = 12.1$ (H-3); 5.46 d, 1 H, $J = 2.5$ (OH); 6.70 - 8.10 m, 20 H (ArH)
Vg	2.22 dd, 1 H, J = 13.2, J = 3.2 (H-5); 3.11 dt, 1 H, J = 14.3, J = 2.6, J = 13.1 (H-5);

	J = 12.1 (H-3); 5.52 d, 1 H, $J = 2.5$ (OH); 6.90 – 8.20 m, 22 H (ArH)
Vh	2.24 dd, 1 H, $J = 13.1$, $J = 3.2$ (H-5); 2.09 s, 3 H (ArCH ₃); 2.35 s, 3 H (ArCH ₃); 3.12 dt, 1 H, $J = 14.2$, $J = 2.5$, $J = 13.2$ (H-5); 3.32 s, 3 H (OCH ₃); 4.40 dd, 2 H, J = 14.3, $J = 13.2$, $J = 2.5$ (H-2,H-6); 5.16 d, 1 H, $J = 12.1$ (H-3); 5.48 d, 1 H, J = 2.5 (OH); 6.65 – 8.25 m, 18 H (ArH)
Vi	2.25 dd, 1 H, <i>J</i> = 3.3, <i>J</i> = 3.1 (H-5); 3.10 dt, 1 H, <i>J</i> = 14.1, <i>J</i> = 2.6, <i>J</i> = 13.2 (H-5); 3.34 s, 3 H (OCH ₃); 3.57 s, 6 H (OCH ₃); 3.85 s, 3 H (OCH ₃); 3.91 s, 3 H (OCH ₃); 4.45 dd, 2 H, <i>J</i> = 14.1, <i>J</i> = 13.2, <i>J</i> = 2.5 (H-2.H-6); 5.10 d, 1 H, <i>J</i> = 12.2 (H-3);

5.40 d, 1 H, J = 2.6 (OH); 6.75 – 8.20 m, 20 H (ArH)

3.33 s, 3 H (OCH₃); 4.45 dd, 2 H, J = 14.1, J = 13.2, J = 2.6 (H-2,H-6); 5.19 d, 1 H,

bond angles are listed in Table I. Figure 1 shows X-ray plot of the compound Vd. The bond lengths, the atomic coordinates and equivalent isotropic displacement parameters are listed in Tables II and III. The relative configuration of each of the five chiral carbons in the cyclohexane ring was also determined from the X-ray molecular picture.

 $(1S^*, 2S^*, 3R^*, 4S^*, 5R^*)$ -(±)-3-Aroyl-2,4,6-triaryl-1-cyano-4-hydroxycyclohexane Carboxylates *V* and *N*-(3,5-Diaryl-2-cyano-5-oxopentanoyl)piperidine *IV*. General Procedure

To a solution of the appropriate sodium alkoxide (0.01 mol) in anhydrous alcohol (150 ml) containing cyanoacetylurea or cyanoacetylpiperidine (0.01 mol) was added chalcone (0.02 mol) for the urea derivative or 0.01 mol for the piperidine derivative). The mixture was stirred at room temperature for 12 - 18 h, the solid formed was filtered and crystallized from glacial acetic acid. The filtrate was poured into water (150 ml), the organic layer separated, dried by anhydrous sodium sulfate and evaporated to give the crude unreacted starting materials.

The characteristic data of the compounds IV and V are given in Table IV. For the ¹H NMR spectra see Table V.

REFERENCES

- 1. Sharanin Y. A., Promonenkov V. K., Sharanina L. G.: Zh. Org. Khim. 18, 625 (1982).
- 2. Jouda M., Hamelin J.: Tetrahedron Lett. 1978, 2885.
- 3. Kandeel Z. E., Hassan K. H., Ismail N. A., Elnagdi M. H.: J. Prakt. Chem. 326, 248 (1984).

- Silver R. F., Kerr K. A., Frandsen P. D., Lelly S. J., Holmes H. L.: Can. J. Chem. 45, 1001 (1967).
- 5. Kambe S., Saito K., Sakurai A., Midorikawa H.: Synthesis 1980, 366.
- 6. Sakurai A., Midorikawa N.: Bull. Chem. Soc. Jpn. 40, 1680 (1967).
- 7. Sakurai A., Midorikawa N.: Bull. Chem. Soc. Jpn. 41, 430 (1968).
- 8. Soto J. L., Seoane C., Rubino M. J., Botija J. M.: Org. Prep. Proced. Int. 16, 11 (1984).
- 9. Al-Hajjar F. H., Jarrar A. A.: J. Heterocycl. Chem. 17, 1521 (1980).
- 10. Degny E., Zard S. Z., Pastor R., Cambon A.: Tetrahedron Lett. 22, 2169 (1981).
- 11. Al-Farkh Y. A., Al-Hajjar F. H., Hammoud H. S.: J. Heterocycl. Chem. 16, 1 (1979).
- 12. Al-Hajjar F. H., Sabri S. S.: J. Heterocycl. Chem. 19, 1087 (1982).
- 13. Posner G. E.: Chem. Rev. 86, 831 (1986).
- 14. Al-Arab M. M.: Chem. Scr. 27, 453 (1987).
- 15. Al-Arab M. M., Ghanem B. S., Olmstead M. M.: Synthesis 1992, 1003.
- 16. Al-Arab M. M., Na'was T. E., Abu-Yousef I. A.: Indian J. Chem., B 29, 694 (1990).
- 17. Atfah M. A., Al-Arab M. M.: J. Heterocycl. Chem. 27, 599 (1990).
- 18. Al-Arab M. M.: J. Heterocycl. Chem. 27, 523 (1990).
- 19. Al-Arab M. M., Tabba H. D., Abu-Yousef I. A., Olmstead M. M.: Tetrahedron 44, 7293 (1988).
- 20. Al-Arab M. M.: J. Heterocycl. Chem. 26, 1665 (1989).
- 21. Al-Arab M. M., Ghanem B. S., Fitton A. O.: Tetrahedron 45, 6545 (1989).
- 22. Al-Arab M. M., Ghanem B. S., Maslat A. O.: Toxicol. Environ. Chem. 27, 267 (1990).